A Comparison Study of Methods for Parameter Estimation in the Physics-based Prognostics
نویسندگان
چکیده
Prediction of remaining useful life of a system is important for safety and maintenance scheduling. In the physics-based prognostics, the accuracy of predicted remaining useful life is directly related to that of estimated model parameters. It, however, is not a simple task to estimate the model parameters because most real systems have multivariate model parameters, which are often correlated each other. This paper mainly discusses the difference in estimating model parameters among different prognostics methods: the particle filter method, the overall Bayesian method, and the incremental Bayesian method. These methods are based on the same theoretical foundation, Bayesian inference, but they are different from each other in the sampling scheme and/or uncertainty analysis process. A simple analytical example and the Paris model for crack growth are used to demonstrate the difference among the three methods in terms of prognostics metrics. The numerical results show that particle filter and overall Bayesian methods outperform the incremental Bayesian method. Even though the particle filter shows slightly better results in terms of prognostics metrics, the overall Bayesian method is efficient when batch data exist.
منابع مشابه
Estimation of parameter of proportion in Binomial Distribution Using Adjusted Prior Distribution
Historically, various methods were suggested for the estimation of Bernoulli and Binomial distributions parameter. One of the suggested methods is the Bayesian method, which is based on employing prior distribution. Their sound selection on parameter space play a crucial role in reducing posterior Bayesian estimator error. At times, large scale of the parametric changes on parameter space bring...
متن کاملParameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملPractical options for selecting data-driven or physics-based prognostics algorithms with reviews
This paper is to provide practical options for prognostics so that beginners can select appropriate methods for their fields of application. To achieve this goal, several popular algorithms are first reviewed in the data-driven and physics-based prognostics methods. Each algorithm’s attributes and pros and cons are analyzed in terms of model definition, model parameter estimation and ability to...
متن کاملComparison of three Estimation Procedures for Weibull Distribution based on Progressive Type II Right Censored Data
In this paper, based on the progressive type II right censored data, we consider estimates of MLE and AMLE of scale and shape parameters of weibull distribution. Also a new type of parameter estimation, named inverse estimation, is introdued for both shape and scale parameters of weibull distribution which is used from order statistics properties in it. We use simulations and study the biases a...
متن کاملThe Investigation of the Estimation Precision of Infiltration Equation Parameters Based on Soil Physics Characteristics for Furrow Irrigation
Furrow irrigation is the most common method of surface irrigation. However, the accurate estimation of the soil water infiltration equation is the most important challenge for evaluating this method of irrigation. In this study, a fast and simple method that is named soil intake families and presented by USDA-NRCS (RSIF), evaluated for estimation of the Kostiakove-lewis infiltration equation pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012